Local habituation maintains sensitivity of visual neurons to multiple looming objects
J.R. Gray, Dept. Biology, University of Saskatchewan, Saskatoon, SK, Canada

Objectives:

To determine if looming-sensitive neurons in the locust are able to respond to

Background:

To produce adaptive behaviours animals must be able to remain vigirant to multip example, survival depends on the ability to distinguish between conspecifics and potential predators.
from the compound eyes and transfers information about looming stimuli $i^{1,2,3}$ in a $1: 1$ spike ratio, to the Descending Contralateral Movement Detector (DCMD) ${ }^{4}$. The DCMD descends to the thoracic ganglia to make synaptic connections to interneurons and motorneurons that control the legs and wings ${ }^{5,6,7,}$. Thus the LGMD/DCMD complex is an excelient model system to study mechanisms of

The DCMDs of gregarious locusts are resistant to habituation of repeated However, there is little information on how the DCMDs respond to visual stimuli that emulate objects that the locust may encounter in the real world.
The experiments described here were designed to describe the responses of the DCMDs to objects that emulate the approach of a conspecific and a potential predator (a bird). Moreover, the experiments address 2 main questions: 1) how do habituated 2) how do the DCMDs respond to multiple objects on random trajectories, as might be expecta in

1 Experimental setup

2 DCMD recordings

3
Habituation of DCMD responses

Maintained sensitivity to a new object trajectory

8
Responses to multiple objects

Summary/Conclusions:

- Locust DCMDs were able to maintain 80% of the intial response to
repeated approaches of a 'locust' or 'bird' presented at 30 second intervals
- DCMD activity habituated to approximately 20% of the the initial response during repeated approaches of a 'locust' or 'bird' at 0 second intervals.
- Habituated DCMDs were able to respond to an object approaching along a new trajectory or to a new, larger object.
- The time of DCMD peak firing habituates (occurs earlier) to small objects approaching along a lateral trajectory

the DCMDs.

- DCMDs do not habituate to multiple objects approaching along random

trajectories.

These findings suggest that habituation to repeated looming stimuli may occur at specific synapses between upstream visual neurons and the vigilant to multiple objects in the natural environment.

References

まuawawazawawavit
Funding provided by the Natural Science and Engineering Research Council of Canada a

